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ABSTRACT
Locking is one of the predominant costs in transaction processing.
While much work has focused on designing efficient concurrency
control mechanisms, not much has been done on understanding
how transaction applications issue queries and leveraging appli-
cation semantics to improve application performance. This paper
presents QURO, a query-aware compiler that automatically reorders
queries in transaction code to improve performance. Observing that
certain queries within a transaction are more contentious than oth-
ers as they require locking the same tuples as other concurrently
executing transactions, QURO automatically changes the applica-
tion such that contentious queries are issued as late as possible. We
have evaluated QURO on various transaction benchmarks, and our
results show that QURO-generated implementations can increase
transaction throughput by up to 6.53×, while reduce transaction
latency by up to 85%.

1. INTRODUCTION
From ticket reservation systems, online shopping, to banking ap-

plications, we interact with online transaction processing(OLTP)
applications on a daily basis. These applications are often imple-
mented using database transactions, where each transaction con-
sists of multiple read and write queries to the database manage-
ment system (DBMS) that stores persistent data. One of the goals
of OLTP applications is to handle large number of concurrent trans-
actions simultaneously. However, since multiple transactions might
access the same tuple stored in the DBMS at the same time, some
form of concurrency control must be implemented to ensure that all
transactions get a consistent view of the persistent data.

Two-phase locking (2PL) [7, 8] is one of the most popular con-
currency control mechanisms implemented by many DBMSs. In
2PL, each data element (e.g., a tuple or a partition) stored in the
database is associated with a read and a write lock, and a transac-
tion is required to acquire the appropriate lock associated with the
given database element before operating on it. For example, while
multiple transactions can be holding the read lock on the same data
concurrently, only one transaction can hold the write lock. When
a transaction cannot acquire a lock, its pauses execution until the

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 5
Copyright 2016 VLDB Endowment 2150-8097/16/01.

lock is released. To avoid deadlocks, (strict) 2PL requires that a
transaction not request additional locks once it releases any lock.
Thus, as each transaction executes, it goes through an expanding
phase where locks are acquired and no lock is released, followed
by a shrinking phase where locks are released and no locks are ac-
quired.

Unfortunately, not all locks are created equal. While each trans-
action typically operates on different elements stored in the DBMS,
it is often the case that certain elements are more contentious than
others, i.e., they tend to be read from or written to by multiple
concurrent transactions. As an illustration, imagine an applica-
tion where all transactions need to update a single tuple (such as a
counter) among other operations. If each transaction starts by first
acquiring the write lock on the counter tuple before acquiring locks
on other data elements, then essentially all but one of the transac-
tions can make progress while the rest are blocked, even though
other transactions could have made further progress if they first ac-
quired locks on other data. As a result, each transaction takes a
longer time to execute, and the overall system throughput suffers.
This is exacerbated in main-memory databases. Since the transac-
tion no longer need to access the disk, most of transaction running
time is spent on executing queries, and the long lock waiting time
is likely to become the predominant performance bottleneck.

One way to avoid the above problem is to reorder the queries in
each transaction such that operations on the most contentious data
elements are performed last. Indeed, as our results show, doing so
can significantly improve application performance. Unfortunately,
reordering queries in transaction code raises various challenges:

∙ OLTP applications are typically written in a high-level pro-
gramming language such as C or Java, and compilers for
these languages treat queries as black-box library calls. As
such, they are unaware of the fact that these calls are exe-
cuting queries against the DBMS, let alone ordering them
during compilation based on the level of contention.

∙ DBMS only receives queries from the application as it exe-
cutes and does not understand how the queries are semanti-
cally connected. As such, it is very difficult for the DBMS to
reorder queries during application execution, since the appli-
cation will not issue the next query until the results from the
current one have been returned.

∙ Queries in a transaction are usually structured based on appli-
cation logic. Reordering them manually will make the code
difficult to understand. Furthermore, developers need to pre-
serve the data dependencies among different queries as they
reorder them, making the process tedious and error-prone.

In this paper we present QURO, a query-aware compiler that au-
tomatically reorders queries within transaction code based on lock



contention while preserving program semantics. To do so, QURO
first profiles the application to estimate the amount of contention
among queries. Given the profile, QURO then formulates the re-
ordering problem as an Integer Linear Programming (ILP) prob-
lem, and uses the solution to reorder the queries and produces an
application binary by compiling the reordered code using a stan-
dard compiler.

This paper makes the following contributions:

∙ We observe that the order of queries in transaction code can
drastically affect performance of OLTP applications, and that
current general-purpose compiler frameworks and DBMSs
do not take advantage of that aspect to improve application
performance.

∙ We formulate the query reordering problem using ILP, and
devise a number of optimizations to make the process scale
to real-world transaction code.

∙ We implemented a prototype of QURO and evaluated it us-
ing popular OLTP benchmarks. When evaluated on main-
memory DBMS implementations, our results show that the
QURO-generated transactions can improve throughput by up
to 6.53×, while reducing the average latency of individual
transactions by up to 85%.

The rest of this paper is organized as follows. We first illustrate
query reordering with an example and give an overview of QURO
in Section 2. Then we describe the preprocessing performed by
QURO in Section 3 followed by details of the reordering algorithm
in Section 4 and profiling in Section 5. We present our experiment
results using three OLTP benchmarks in Section 6, discuss related
work in Section 7, and then conclude.

2. OVERVIEW
In this section we discuss query reordering in transaction code

using an example and describe the architecture of QURO. To mo-
tivate, Listing 1 shows an excerpt from an open-source imple-
mentation [3] of the payment transaction from the TPC-C bench-
mark [21], which records a payment received from a customer. In
the excerpt, the code first finds the warehouse to be updated with
payment on line 1 and subsequently updates it on line 2. Similarly,
the district table is read and updated on lines 3 and 4. After that
the code updates the customer table. The customer can be selected
by customer id, or customer name. If the customer has good credit,
only the customer balance will be updated, otherwise the detail of
this transaction will be appended to the customer record. Finally it
inserts a tuple into the history table recording the change.
1 w_name = select("warehouse");
2 update("warehouse", w_name);
3 d_name = select("district");
4 update("district");
5 if (c_id == 0) {
6 c_id = select("customer", c_name);
7 }
8 c_credit = select("customer", c_id);
9 if (c_credit [0] == (’G’)) {

10 update("customer", c_id , w_id);
11 } else {
12 c_id = "..." + w_id + c_id + "...";
13 update("customer", c_id);
14 }
15 insert("history", w_name , d_name , ...);

Listing 1: Original code fragment from TPC-C payment
transaction. Here select("t", v) represents a selection
query on table t that uses the value of program value v as one
of its parameters, likewise for update and insert.
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Figure 1: Comparison of the execution of the original and reordered
implementation of the payment transaction. The darker the color,
more likely the query is going to access contentious data.

1 if (c_id == 0) {
2 c_id = select("customer", c_name);
3 }
4 c_credit = select("customer", c_id);
5 if (c_credit [0] == (’G’)) {
6 update("customer", c_id , w_id);
7 }else{
8 c_id = "..." + w_id + c_id + "...";
9 update("customer", c_data);

10 }
11 d_name = select("district");
12 update("district");
13 w_name = select("warehouse");
14 insert("history", w_name , d_name , ...);
15 update("warehouse", w_name);

Listing 2: Reordered code fragment from Listing 1

As written, the implementation shown in Listing 1 performs poorly
due to high data contention. In a typical TPC-C setup, the ware-
house table contains the fewest tuples. Hence as the number of
concurrent transactions increases, the chance that multiple transac-
tions will update the same warehouse table tuple (on line 2 in List-
ing 1) also increases, and this will in turn increase lock contention
and the amount of time spent in executing each transaction. This is
illustrated pictorially in Figure 1a with two concurrent transactions
that try to update the same tuple in the warehouse table. When exe-
cuted under 2PL, each transaction attempts to acquire the exclusive
lock on the same warehouse tuple before trying to update it, and
will only release the lock when the transaction commits. In this
case T1 acquires the lock, blocking T2 until T1 commits. Thus the
total amount of time needed to process the two transactions is close
to the sum of these two transactions executed serially.

However, there is another way to implement the same transac-
tion, as shown in Listing 2. Rather than updating the warehouse
(i.e., the most contentious) table first, this implementation updates
the customer’s balance first, then updates the district and warehouse
tables afterwards. This implementation has the same semantics as
that shown in Listing 1, but with very different performance char-
acteristics, as shown in Figure 1b. By performing the updates on
warehouse table at a later time (line 15), transaction T1 delays ac-
quiring the exclusive lock on the warehouse tuple, allowing T2 to
proceed with operations on other (less contentious) tuples concur-
rently with T1. Comparing the two implementations, reordering
increases transaction concurrency, and reduces the total amount of
time needed to execute the two transactions.
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Figure 2: Architecture and workflow of QURO

While reordering the implementation shown in Listing 1 to List-
ing 2 seems trivial, doing so for general transaction code is not
an easy task. In particular, we need to ensure that the reordered
code does not violate the semantics of the original code in terms
of data dependencies. For instance, the query executed on line 15
in Listing 1 can only be executed after the queries on lines 1 and
3, because it uses w_name and d_name, which are results of those
two queries. Besides such data dependencies on program variables
(as w_name and d_name mentioned above), there may also be de-
pendencies on database tuples. For example, the query on line 3
reads a database tuple which the query on line 4 later updates, so
the two queries have a data dependency on that tuple. While such
dependencies can be inferred manually, doing so for longer and
more complex transactions puts excessive burden on developers.
Unfortunately, typical compilers do not perform such aggressive
transformations, as they treat queries as external function calls.

QURO is designed to optimize transaction code by reordering
query statements according to the lock contention each query in-
curs. To use QURO, the developer first demarcates each transaction
function with BEGIN_TRANSACTION and END_TRANSACTION.1 Our
current prototype is built on Clang and accepts transaction code
written in C/C++, and QURO assumes that the transactions use stan-
dard APIs to issue queries to the DBMS (e.g., ODBC).

The architecture of QURO is shown in Figure 2. After parsing the
input code, QURO first generates an instrumented version to profile
the running time of each query and gathers information about query
contention. QURO deploys the instrumented version using the same
settings as the original application and runs it for a user-specified
amount of time. After profiling, QURO assigns a contention index
to each query to be used in subsequent reordering steps. QURO
also collects information about database schema, which is used to
generate order constraints.2

After profiling, QURO performs a number of preprocessing steps
on the input code. First, it performs reaching definition analysis
for each transaction function. Reaching definition analysis is used
to infer data dependencies among different program variables. Af-
ter that, QURO performs loop fission and breaks compound state-
ments (e.g., conditionals with multiple statements in their bodies)
into smaller statements that we refer to as reorder units. This is to
expose more reordering opportunities, to be discussed in Section 3.

1QURO currently assumes that each transaction is implemented within a
single function and leave inter-procedural analysis as future work.
2 QURO assumes the database schema doesn’t change when transactions
are running.

QURO next uses the results from profiling and preprocessing to
discover order constraints on queries before reordering. Data de-
pendencies among program variables or database tuples may in-
duce order constraints. QURO first uses the results from reach-
ing definition analysis during preprocessing to construct order con-
straints based on program variables. QURO then analyzes the queries
with the database schemas to infer order constraints among database
tuples, e.g., if two queries may update the same tuple in the same
table, the order of these queries cannot be changed. Reordering
is then formulated as an ILP problem based on the ordering con-
straints, and solving the program returns the optimal way to im-
plement the transaction subject to the data dependencies given the
contention indices. While a simple implementation is to encode
each reorder unit as a variable in the ILP, solving the ILP might
take a substantial amount of time, especially for transactions with
many lines of code. In Section 4.4 we propose an optimization to
make this tractable and more efficient. After receiving the order
of queries from ILP solver, QURO restructures the program, and
uses a general-purpose compiler to produce the final binary of the
application.

In the next sections we discuss each step involved in the reorder-
ing process in detail.

3. PREPROCESSING
Before statement reordering, QURO parses the input transaction

code into an abstract syntax tree (AST) and performs two prepro-
cessing tasks: breaking the input code into small units to be re-
ordered, and analyzing the data dependencies among program vari-
ables. In this section we describe the details of these two steps.

3.1 Breaking Loop and Conditional Statements
The purpose of the first task is to enable more queries to be re-

ordered. For loop and conditional statements, it is hard to change
the ordering of statements within each block, as each such state-
ment can be nested within others. Disregarding the bodies inside
loop and conditional statements and treating the entire statement as
one unit will limit the number of possible ways that the code can
be reordered. In fact, as we will demonstrate in Section 6, breaking
loop and conditional statements is essential to improve the perfor-
mance for many transaction benchmarks.

For loop statements, QURO applies loop fission, a well-studied
code transformation technique [22], to split an individual loop nest
into multiple ones. The basic idea is to split a loop with two state-
ments 𝑆1 and 𝑆2 in its body into two individual loops with the same
loop bounds if:

∙ There is no loop carry dependency. If 𝑆1 defines a value that
will be used by 𝑆2 in later iterations, then 𝑆1 and 𝑆2 have to reside
in the same loop.

∙ There is no data dependency between the two statements to be
split. If 𝑆1 defines a value that is used by 𝑆2 in the same iteration,
and 𝑆1 will rewrite that value in some later iteration, then 𝑆1 and
𝑆2 cannot be split.

∙ The statements do not affect loop condition. If 𝑆1 writes some
value that affects the loop condition, then all the statements within
the loop cannot be split into separate loops.

We apply the fission algorithm discussed in prior work [24] and
handle nested loops by checking the fission condition iteratively.

Listing 3 and 4 show an example of a loop before and after loop
fission. Line 2 defines var1 at every iteration, but since line 3 uses
var1, so lines 2 and 3 have to reside in the same loop. One the other
hand, line 4 defines var2[i] at iteration i, and line 5 uses var2[i].
Since line 4 does not redefine var2[i] in other iterations, line 4 and
5 can be split. Notice in the example that there are no dependencies



between lines 2 and 3 (when considered in tandem), line 4, and line
5. Since none of these statements affect the loop condition, they
can be safely split into individual loops.

for(i=0; i<n; i++){
var1 = select("table1");
update("table1", var1 +1);
var2[i] = select("table2");
update("table2", var2[i]+1);

}

Listing 3: Loop fission example

for(i=0; i<n; i++){
var1 = select("table1");
update("table1", var1 +1);

}
for(i=0; i<n; i++){

var2[i] = select("table2");
}
for(i=0; i<n; i++){

update("table2", var2[i]+1);
}

Listing 4: Loop code after fission

Similarly, conditional statements under a single condition can also
be split. In general, conditional statements 𝑆1 and 𝑆2 under the
same Boolean condition can be split into multiple ones with the
same condition if:

∙ Neither statement affects the condition.
∙ The condition does not have any side effects, for example,

changing the value of a program variable that is used by any other
statements in the program.

As an illustration, breaking the conditional block will transform
line 9 to line 14 from Listing 1 into Listing 5.

if(c_credit [0] == (’G’)) {
update("customer", c_id , w_id);

}
if(!( c_credit [0] == (’G’)){

c_id = "..." + w_id + c_id + "...";
}
if(!( c_credit [0] == (’G’)){

update("customer", c_id);
}

Listing 5: Example of breaking conditional statements

3.2 Analyzing Reaching Definitions
After breaking loop and conditional statements, QURO analyzes

the data dependencies among statements by computing reaching
definitions. Formally speaking, a definition of a program vari-
able v by program statement 𝑆1 reaches a subsequent (in terms
of control flow) statement 𝑆2 if there is a program path from 𝑆1

to 𝑆2 without any intervening definition of v. We compute reach-
ing definitions for each program statement using a standard data-
flow algorithm [19]. The process is straightforward for most types
of program statements. For function calls, however, we distin-
guish between those that are database calls (e.g., those that issue
queries), for which we precisely model the def-use relationships
among the function parameters and return value, and other func-
tions, for which we conservatively assume that all parameters with
pointer types or parameters that are passed by reference are both
defined and used by the function.

4. REORDERING STATEMENTS
The preprocessing step normalizes the input code into individual

statements that can be rearranged. We call each such statement,

including an assignment, a function call statement, or a loop/con-
ditional block that cannot be further decomposed using methods as
described in Section 3.1, a reorder unit. In this section we discuss
how we formulate the statement reordering problem by making use
of the information collected during preprocessing.

4.1 Generating Order Constraints
As discussed in Section 2, the goal of reordering is to change the

structure of the transaction code such that the database queries are
issued in an increasing order of lock contention. However, doing
so is not always possible because of data dependencies among the
issued queries. For instance, the result of one query might be used
as a parameter in another query, or the result of one query might be
passed to another query via a non-query statement. Furthermore,
two queries might update the same tuple, or a query might update
a field that is a foreign key to a table involved in another query. In
all such cases the two queries cannot be reordered even though one
query might be more contentious than the other.

Formally, we need to preserve the data dependencies 1) among
the program variables, 2) among the database tuples, when restruc-
turing queries in transaction code.3 The reaching definition analysis
from preprocessing infers the first type of data dependency, while
analyzing the queries using database schema information infers the
second type. These data dependencies set constraints on the order
of reorder units. In the following we discuss how these constraints
are derived.

Dependencies among program variables:

1. Read-after-write (RAW): Reorder unit 𝑈𝑖 uses a variable that
is defined by another unit 𝑈𝑗 . Formal constraint: Reorder
unit 𝑈𝑖 should appear before 𝑈𝑗 in the restructured code.

2. Write-after-read (WAR): 𝑈𝑗 uses a variable that is later up-
dated by another unit 𝑈𝑘. Formal constraint: If both 𝑈𝑖 and
𝑈𝑘 define the same variable 𝑣, and 𝑈𝑗 uses 𝑣 defined by 𝑈𝑖,
then 𝑈𝑘 cannot appear between 𝑈𝑖 and 𝑈𝑗 . If no such 𝑈𝑖

exists, as in the case of 𝑣 being a function parameter that is
used by 𝑈𝑗 , then 𝑈𝑘 should appear after 𝑈𝑗 in the restruc-
tured code.

3. Write-after-write (WAW): 𝑣 is a global variable or a function
parameter that is passed by reference, and both 𝑈𝑖 and 𝑈𝑙

define 𝑣, with 𝑈𝑙 being the last definition in the body of the
function. Formal constraint: 𝑈𝑖 should appear before 𝑈𝑙 in
the restructured code. If 𝑣 is a global variable, we assume
that program locks are in place to prevent race conditions.

We use the code shown in Listing 1 to illustrate the three kinds
of dependency discussed above. For instance, the insertion into the
history table on line 15 uses variable w_name defined on line 1 and
d_name defined on line 3. Thus, there is a RAW dependency be-
tween line 15 along with line 1 and line 3. Hence, a valid reorder-
ing should always place line 15 after lines 1 and 3. Meanwhile,
the update on customer table on line 8 uses variable c_id, which
is possibly defined on line 6 or is passed in from earlier code. Fur-
thermore, line 12 redefines this variable. Thus, there is a WAR
dependency between line 12 and line 8, meaning that in a valid
ordering line 12 should not appear between line 6 and line 8.

Dependencies among database tuples:

1. Operations on the same table: queries 𝑄𝑖 and 𝑄𝑗 operate
on the same table, and at least one of the queries performs a
write (i.e., update, insert, or delete).

3 QURO currently does not model exception flow. As such, the reordered
program might have executed different number of statements when an ex-
ception is encountered as compared to the original program.



2. View: query 𝑄𝑖 operates on table 𝑇𝑖 which is a view of table
𝑇𝑗 , and query 𝑄𝑗 operates on 𝑇𝑗 . At least one of the queries
performs a write.

3. Foreign-key constraints: 𝑄𝑖 performs an insert/delete on ta-
ble 𝑇𝑖, or change in the key field 𝐶𝑖 of 𝑇𝑖. 𝑄𝑗 operates on
column 𝐶𝑗 in table 𝑇𝑗 , where 𝐶𝑗 is a foreign key to 𝑇𝑖 which
includes a column that column 𝐶𝑖 in 𝑇𝑖 references.

4. Triggers: 𝑄𝑖 performs an insert or a delete on table 𝑇𝑖, which
triggers a set of pre-defined operations that alter 𝑇𝑗 . Query
𝑄𝑗 operates on table 𝑇𝑗 .
Formal constraint: In all of the above cases, the order of
𝑄𝑖 and 𝑄𝑗 after reordering should remain the same as in the
original program.

For the code example in Listing 1, queries on line 1 and line 2
operate on the same table, so they cannot be reordered or else the
query on line 1 will read the wrong value.

To discover the dependencies among database tuples, QURO an-
alyzes each database query from the application to find out which
tables and columns are involved in each query. Then QURO then
utilizes the database schema obtained during preprocessing to dis-
cover the dependencies listed above.

4.2 Formulating the ILP Problem
QURO formulates the reordering problem as an instance of ILP.

As mentioned in Section 2, QURO first profiles the application to
determine how contentious the queries are among the different con-
current transactions. Profiling gives a conflict index 𝑐 to each query:
the larger the value, the more likely that the query will have data
conflict with other transactions. The conflict index for non-query
statements is set to zero. Under this setting, the goal of reorder-
ing is to rearrange the query statements in ascending conflict index,
subject to the order constraints described above.

Concretely, assume that there are 𝑛 reorder units, 𝑈1 to 𝑈𝑛, in a
transaction, with conflict indices 𝑐1 to 𝑐𝑛, respectively. We assign
a positive integer variable 𝑝𝑖 to represent the final position of each
of the 𝑛 reorder units. The order constraints derived from data
dependencies can be expressed as the following constraints in the
ILP problem:

∙ 𝑝𝑖 ≤ 𝑛, 𝑖 ∈ [1, 𝑛], such that each unit is assigned a valid
position.

∙ 𝑝𝑖 ̸= 𝑝𝑗 , 𝑖 ̸= 𝑗, such that each unit has a unique position.
∙ 𝑝𝑖 < 𝑝𝑗 , if there is a RAW dependency between 𝑈𝑖 and 𝑈𝑗 .
∙ (𝑝𝑘 < 𝑝𝑖) | (𝑝𝑘 > 𝑝𝑗), if there is a WAR dependency between

𝑈𝑗 , 𝑈𝑘 and 𝑈𝑖, where 𝑈𝑖 redefines a variable that 𝑈𝑗 uses.
∙ 𝑝𝑘 > 𝑝𝑗 , 𝑘 ̸= 𝑗, if there is a WAR dependency between 𝑈𝑗

and 𝑈𝑘, and and there is no intervening variable redefinition.
∙ 𝑝𝑙 > 𝑝𝑖, 𝑖 ̸= 𝑙, if there is a WAW dependency between 𝑈𝑙 and

𝑈𝑖, and 𝑈𝑙 is the last definition of a global variable or a return value
in the transaction.
∙ 𝑝𝑖 < 𝑝𝑗 , 𝑖 < 𝑗, if 𝑈𝑖 contains query 𝑄𝑖, query 𝑄𝑗 is in reorder

unit 𝑈𝑗 , and the order of 𝑄𝑖 and 𝑄𝑗 needs to be preserved due to
data dependencies among database tuples referenced by 𝑄𝑖 and 𝑄𝑗 .

Given these, the objective of the ILP problem is to maximize:
𝑛∑︁

𝑖=1

𝑝𝑖 * 𝑐𝑖

Solving the program will give us the value of 𝑝1, . . . 𝑝𝑛, which
indicates the position of each reorder unit in the final order.

As an example, the code shown in Listing 1 generates the follow-
ing constraints. Here we assume that there are no view, trigger or
foreign-key relationships between any two tables used in the trans-

action:

𝑝𝑖 ≤ 11, 𝑖 ∈ {1, 2, 3, 4, 6, 8, 10, 11, 13, 14, 16}
𝑝𝑖 ̸= 𝑝𝑗 , 𝑖 ̸= 𝑗

𝑝1 < 𝑝15,RAW on variable w_name

𝑝3 < 𝑝15,RAW on variable d_name

...
(𝑝12 < 𝑝6) | (𝑝12 > 𝑝8),WAR on variable c_id

(𝑝12 < 𝑝6) | (𝑝12 > 𝑝10),WAR on variable c_id

...
𝑝1 < 𝑝2,Query order constraint, as both query
𝑄1(in 𝑈1) and 𝑄2(in 𝑈2) operate on the warehouse table
𝑝3 < 𝑝4,Query order constraint, as both query
𝑄3(in 𝑈3) and 𝑄4(in 𝑈4) operate on the district table

With the conflict indices for query-related units as shown in Ta-
ble 1, QURO will give an reordering of the units shown in Listing 2.

Table 1: conflict index for each reorder units in Listing 1

unit 1 2 3 4 6 8 10 13 15

𝑐 500 510 100 110 50 50 60 60 10

4.3 Removing Unnecessary Dependencies
ILP problem is an NP-hard problem in general. In the following

sections we describe two optimizations to reduce the number of
constraints and variables in the ILP problem, and we evaluate these
techniques in Section 6.8.

First, we describe a technique to reduce the number of ILP con-
straints. Consider the example shown in Listing 6.

1 v = select("table1");
2 update("table2", v);
3 v = select("table3", v);

Listing 6: Code example to illustrate renaming

1 v = select("table1");
2 v_r = v;
3 v_r = select("table3", v_r);
4 update("table2", v);

Listing 7: Code example after renaming
If the update on line 2 is more contentious than the query on line 3,

then QURO’s reordering algorithm would place line 3 before line 2.
However, RAW and WAR lead to the following constraints:

𝑝1 < 𝑝2; 𝑝1 < 𝑝3; (RAW)
(𝑝3 < 𝑝1) ∨ (𝑝3 > 𝑝2); (WAR)

meaning that reordering will violate data dependency. However,
we can remove the WAR dependency with variable renaming by
creating a new variable v_r, assigning v to it before v is used, and
replacing subsequent uses of v to be v_r. This allows us to restruc-
ture the code to that shown in Listing 7.

In general, WAR and WAW are name dependencies (in contrast
to data dependencies, as in the case of RAW) that can be removed
by renaming. Doing so reduces the number of ILP constraints,
along with enabling more queries to be reordered. As shown in
the example above. However, if the variable v involved in a WAR
or WAW dependency satisfies any of the following conditions, then
removing WAR and WAW will be more complicated:



1 v=select("table1");
2 if(cond)
3 v=select("table2");
4 update("table3", v);

1 v=select("table1");
2 v_r2=v;
3 if(cond){
4 v_r1=select("table2");
5 v_r2=v_r1;
6 }
7 update("table3", v_r2);

Listing 8: Renaming example
with multiple reaching definitions

Listing 9: Example
after renaming

∙ v is not of primitive type (e.g., a pointer or class object). Since
renaming requires cloning the original variable, it might be impos-
sible to do so for non-primitive types as they might contain private
fields. Besides, cloning objects can slow down the program. Thus,
we do not rename non-primitive variables and simply encode any
WAW and WAR dependencies involving these variables in the ILP.

∙ v is both used and defined in the same reorder unit. If the same
variable is both defined and used in the same reorder unit, such as
f(v) where v is passed by reference, then replacing v with v_r in
the statement will pass an uninitialized value to the call. To handle
this issue, the value of v should be first copied to v_r before the call.
This is done by inserting an assign statement before the statement
containing the variable to be renamed: v_r = v; f(v_r).

∙ Multiple definitions reach the same use of v. In this case, if any
of the definitions is renamed, then all other definitions will need to
be renamed as well. We use the example in Listing 8 to illustrate.
The definitions of v on lines 1 and 3 both reach the update on line 4.
If v needs to be renamed on line 3 due to data dependency violation
(not shown in the code), then we create a new variable v_r2 to hold
the two definitions so that both v_r1 and v reach the use at the
update query, as shown in Listing 9.

4.4 Shrinking Problem Size
Transactions that implement complex program logic can contain

many statements, which generates many reordering units and vari-
ables in the ILP problem. This can cause the ILP solver to run for
a long time. In this section we describe an optimization to reduce
the number of variables required in formulating the ILP problem.

Since our goal is to reorder database query related reorder units,
we could formulate the ILP problem by removing all variables as-
sociated with non-query related reorder units from the original for-
mulation. This does not work, however, as dropping such variables
will mistakenly remove data dependencies among query related re-
order units. For example, suppose query 𝑄3 contained in 𝑈3 uses
as parameter the value that is computed by a reorder unit 𝑈2 con-
taining no query, and 𝑈2 uses a value that is returned by query 𝑄1

in 𝑈1. Dropping non-query related variables in the ILP (in this case
𝑝2 that is associated with 𝑈2) will also remove the constraint be-
tween 𝑝1 and 𝑝3, and that will lead to an incorrect order. The order
will be correct, however, if we append extra constraints to the ILP
problem(in this case 𝑝1 < 𝑝3) to make up for the removal of the
non-query related variables. To do so, we take the original set of
ILP constraints and compute transitively the relationship between
all pairs of query related reorder units. First, we define an auxiliary
Boolean variable 𝑥𝑖𝑗 for 𝑖 < 𝑗, where 𝑖, 𝑗 ∈ [1, 𝑛], to indicate that
𝑝𝑖 < 𝑝𝑗 . Then, we rewrite each type of constraints in the original
ILP into Boolean clauses using the auxiliary Boolean variables as
follows:
∙ 𝑝𝑖 < 𝑝𝑗 ⇒ 𝑥𝑖𝑗 = 𝑡𝑟𝑢𝑒

∙ (𝑝𝑘 < 𝑝𝑖) | (𝑝𝑘 > 𝑝𝑗) ⇒

{︃
(𝑥𝑘𝑗 → 𝑥𝑘𝑖) = 𝑡𝑟𝑢𝑒, if 𝑘 < 𝑖

(𝑥𝑖𝑘 → 𝑥𝑗𝑘) = 𝑡𝑟𝑢𝑒, if 𝑘 > 𝑗
∙ 𝑝𝑘 > 𝑝𝑗 ⇔ 𝑥𝑗𝑘 = 𝑡𝑟𝑢𝑒
∙ 𝑝𝑙 > 𝑝𝑖 ⇔ 𝑥𝑖𝑙 = 𝑡𝑟𝑢𝑒
After that, we combine all rewritten constraints as a conjunction

𝐸. Clauses in 𝐸 can include either a single literal, such as 𝑥𝑖𝑗 , or
two literals, as in 𝑥𝑘𝑙 → 𝑥𝑚𝑛:

𝐸 = 𝑥𝑖𝑗 ∧ ... ∧ (𝑥𝑘𝑙 → 𝑥𝑚𝑛) ∧ ...

Note that any ordering that satisfies all the constraints from the
original ILP will set the values of the corresponding auxiliary Boolean
variables such that 𝐸 evaluates to true.

We now use the existing clauses in 𝐸 to infer new clauses by
applying the following inference rules:

∙ (𝑥𝑖𝑗 → 𝑥𝑘𝑙) ∧ (𝑥𝑘𝑙 → 𝑥𝑢𝑣) ⇒ 𝑥𝑖𝑗 → 𝑥𝑢𝑣

∙ 𝑥𝑖𝑗 ∧ 𝑥𝑗𝑘 ⇒ 𝑥𝑖𝑘

∙ 𝑥𝑖𝑗 ∧ (𝑥𝑖𝑗 → 𝑥𝑘𝑙) ⇒ 𝑥𝑘𝑙

∙ (𝑥𝑖𝑗 ∧ 𝑥𝑗𝑘) ⇒ 𝑥𝑖𝑘

∙ ((𝑥𝑖𝑗 ∧𝑥𝑘𝑙) → 𝑥𝑢𝑣)∧ (𝑥𝑢𝑣 → 𝑥𝑚𝑛) ⇒ (𝑥𝑖𝑗 ∧𝑥𝑘𝑙) → 𝑥𝑚𝑛

∙ ((𝑥𝑖𝑗 ∧𝑥𝑘𝑙) → 𝑥𝑢𝑣)∧ (𝑥𝑚𝑛 → 𝑥𝑖𝑗) ⇒ (𝑥𝑚𝑛∧𝑥𝑘𝑙) → 𝑥𝑢𝑣

Applying each inference rule generates a new clause, and the
process continues until no new clauses can be generated. All clauses
are then collected into a conjunction 𝐸′ with the form:

𝐸′ = 𝑥𝑖𝑗 ∧ ... ∧ (𝑥𝑘𝑙 → 𝑥𝑚𝑛) ∧ ... ∧ ((𝑥𝑢𝑣 ∧ 𝑥𝑤𝑥) → 𝑥𝑦𝑧) ∧ ...

which encodes all the dependencies across each pair of reorder
units.

After this process, we convert all clauses in 𝐸′ back into our ILP
constraints. As we go through each clause in 𝐸′, we only select
those clauses with literals about query related reorder units, i.e.,
{𝑥𝑖𝑗 : 𝑈𝑖 and 𝑈𝑗 contain queries}, and convert them back into ILP
constraints with the following rules:

∙ 𝑥𝑖𝑗 = 𝑡𝑟𝑢𝑒 ⇒ 𝑝𝑖 < 𝑝𝑗
∙ (𝑥𝑖𝑗 → 𝑥𝑘𝑙) ⇒ (𝑝𝑖 < 𝑝𝑗) ∨ (𝑝𝑘 > 𝑝𝑙)
∙ ((𝑥𝑖𝑗 ∧ 𝑥𝑘𝑙) → 𝑥𝑢𝑣) ⇒ (𝑝𝑖 > 𝑝𝑗) ∨ (𝑝𝑘 > 𝑝𝑙) ∨ (𝑝𝑢 < 𝑝𝑣)
The ILP constraints will now only involve query related units,

and solving these constraints will give us the optimal ordering.
We now prove that the iterative inference process described above

converges in polynomial time 𝑛, where 𝑛 is the number of re-
order units. To see why, notice that each application of inference
rules introduces a new clause of the form 𝑥𝑖𝑗 , 𝑥𝑖𝑗 → 𝑥𝑘𝑙, or
𝑥𝑖𝑗 ∧ 𝑥𝑘𝑙 → 𝑥𝑢𝑣 . If no new clause is generated, the process
terminates. Since the number of Boolean literals 𝑥𝑖𝑗 is bounded
by 𝒪(𝑛2), the number of possible clauses is also polynomial in 𝑛.
Thus, it will take a polynomial number of inference rule applica-
tions. Since searching all existing clauses for rule application is
done in polynomial time as well, the induction process described
above will converge in polynomial time with respect to the number
of variables in the original ILP problem.

Given a solution to the optimized ILP, there always exists an
ordering of all reorder units such that all constraints are satisfied.
The proof is included in the technical report [23].

4.5 Restructuring Transaction Code
After QURO receives the ordering of queries from the ILP solver,

it restructures the input code accordingly. If we rely on the ILP
solver to find the order of all reorder units (as discussed in Sec-
tion 4.2), then generating the final code would be easy. However,
if we apply the optimization discussed in Section 4.4 to only solve
for query related reorder units, then we need to determine the or-
dering of all non-query related reorder units as well. We discuss
the restructuring process in this section.

The basic idea of restructuring code is to iterate through each
query according to its new order as given by the solver, try to place
other reorder units that have data dependencies on the query being
processed, and roll back upon violating any order constraint. As
listed in Algorithm 1, we start with an empty list 𝑈_𝑙𝑖𝑠𝑡, which is
used to store the list of reordered units. We insert a unit 𝑈 from



Algorithm 1 Algorithm For Restructuring Transaction Code

1: for 𝑄𝑖 ∈ 𝑄_𝑙𝑖𝑠𝑡 do
2: for 𝑈𝑗 ∈ 𝑈𝑠 and 𝑈𝑗 /∈ 𝑈_𝑙𝑖𝑠𝑡 and 𝑈𝑗 /∈ 𝑅𝑒𝑗[𝑄𝑖] and

Defs(𝑈𝑗)∈ 𝑈_𝑙𝑖𝑠𝑡 and 𝑄𝑖 ∈ Uses(𝑈𝑗) do
3: if CheckValid(𝑈𝑗) then
4: 𝑈_𝑙𝑖𝑠𝑡.insert (𝑈𝑗);
5: else
6: break;
7: end if
8: end for
9: 𝑈_𝑙𝑖𝑠𝑡.insert (𝑄𝑖);

10: for 𝑈𝑘 ∈ 𝑈𝑠 and 𝑈𝑘 /∈ 𝑈_𝑙𝑖𝑠𝑡 and 𝑈𝑘 /∈ 𝑅𝑒𝑗[𝑄𝑖] and
Defs(𝑈𝑘)∈ 𝑈_𝑙𝑖𝑠𝑡 and 𝑄𝑖 ∈ Defs(𝑈𝑘) do

11: if CheckValid(𝑈𝑘) then
12: 𝑈_𝑙𝑖𝑠𝑡.insert (𝑈𝑘);
13: else
14: break;
15: end if
16: end for
17: end for
18:
19: function CheckValid(𝑈𝑖)
20: ... // check all clauses in 𝐸′ (details not shown)
21: if 𝐸′ evaluates to true then
22: return 1;
23: else
24: if Variable v in 𝑈𝑖 can be renamed then
25: Rename v in 𝑈𝑖 and Uses(𝑈𝑖);
26: else
27: 𝑡𝑒𝑚𝑝 = clear 𝑈_𝑙𝑖𝑠𝑡 to the failing point 𝑈𝑓 ;
28: reinsert 𝑡𝑒𝑚𝑝 into 𝑈_𝑙𝑖𝑠𝑡;
29: for query units 𝑄𝑓 ∈ 𝑡𝑒𝑚𝑝 do
30: 𝑅𝑒𝑗[𝑄𝑓 ].insert(𝑈𝑓 );
31: end for
32: end if
33: end if
34: end function

the set 𝑈𝑠 of all reordered units into the list when all other units
producing values that 𝑈 uses are already in the list. To do so, we
define two functions: Defs(𝑈𝑖) and Uses(𝑈𝑖). Defs returns the
set of reorder units that defines variables used by unit 𝑈𝑖, and Uses
returns the set of reorder units that uses values defined by 𝑈𝑖. The
values to be returned are computed during preprocessing as dis-
cussed in Section 3.2. For each query 𝑄𝑖, we first insert all units
in Defs(𝑄𝑖) into 𝑈_𝑙𝑖𝑠𝑡 (line 2 to line 8), followed by 𝑄𝑖 itself
(line 9), and Uses(𝑄𝑖) (line 10 to line 16). For every reorder unit
𝑈 that is inserted into 𝑈_𝑙𝑖𝑠𝑡, we check if 𝑈 violates any data de-
pendency constraints using the function CheckValid. Checking is
done by scanning the clauses in 𝐸′ as discussed in Section 4.4 to
see if the current ordering of units would make 𝐸′ evaluate to false.
If so, the current order violates some data dependency constraint
encoded in the ILP problem, and the algorithm attempts to resolve
the WAR or WAW violation using variable renaming as described
in Section 4.3. If the variable cannot be renamed, then the algo-
rithm backtracks to reprocess all reorder units starting from the first
reorder unit that falsifies 𝐸′. For each query 𝑄𝑖, we keep a reject
list (𝑅𝑒𝑗[𝑄𝑖]) to record all reorderings that have been attempted
but failed and led to a rollback. The process continues until a satis-
fying reordering is found, and Section 4.4 showed that there always
exists a valid order.

5. PROFILING
As mentioned in Section 2, QURO profiles the transaction code

by running an instrumented version of the application to estimate
the amount of lock contention for each query. There has been prior
work that studies how to estimate locking contention. Johnson et
al. [15] uses Sun’s profiling tools to calculate time breakdown of
database transactions, analyzing the time spent on useful work and
lock waiting to identify contention level in the lock manager. Sync-
char [20] runs a representative sample workload to calculate the
conflict density and infer lock contention. QURO can use such tech-
niques, but chose a simpler method which exams the running time
of each query and computes its standard deviation. In our current
prototype, most of the transaction time is spent on lock waiting. If
the query accesses contentious data, then the lock waiting time will
vary greatly from one execution to another. Hence the larger the
deviation, the greater the possibility of data conflict.

To collect query running time, QURO adds instrumentation code
before and after each query, and computes the standard deviation
after profiling is completed. In the current prototype, we assume
the profiler runs with the same machine settings as the actual de-
ployment of the application.

6. EVALUATION
We have implemented a prototype of QURO using Clang [2] to

process transaction code written in C/C++, and gurobi [5] as the
external ILP solver. In this section we report our experiment results
under different settings where we compare the performance of the
original implementation and the one generated by QURO.

We first study the performance of transaction code generated by
QURO by isolating the effects of disk operations (e.g., fetching and
writing committed data back to the disk), which can dominate the
amount of time spent in processing each transaction. To do so, we
disabled flushing data to the disk at commit time. The machine
we use has memory large enough to hold the entire data set of any
application used in the evaluation. All of the following experiments
were performed on MySQL 5.5 server hosted on a machine with
128 2.8GHz processors and 1056GB memory.

6.1 Benchmarks
We used the following OLTP applications for our experiments:
∙ The TPC-C benchmark. We used an open source implementa-

tion [3] of the benchmark as input source code, and performed ex-
periments by running each type of transactions individually and dif-
ferent mixes of transactions. Due to limited space, we only present
the results of new order and payment transactions running alone, a
mix of payment and new order transaction, and a standard mix of
all types according to the specification [21]. The results for other
transactions can be found in the technical report [23].

∙ The trade related transactions from the TPC-E benchmark.
The TPC-E benchmark models a financial brokerage house using
three components: customers, brokerage house, and stock exchange.
We used an open source implementation [4] as the input. The trans-
actions we evaluated includes trade update, order, result and status
transactions. We only present the results of trade update transaction
because other transactions do not include queries on contentious
data, where reordering gives limited benefits. The results of other
trade transactions can be found in the technical report.

∙ Transaction from the bidding benchmark. We use an open
source implementation of this benchmark [1]. This benchmark sim-
ulates the activity of users placing bids on items. There is only one
type of transaction in this benchmark: it reads the current bid, up-
dates the user and bidding item information accordingly, and inserts
a record into the bidding history table.
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1 2 4 8 16 32
number of warehouses

0

2000

4000

6000

8000

10000

tr
a
n
sa

ct
io

n
s/

se
c

1.74x
1.18x

1.05x

1.02x
1.04x

1.02x

QURO
original

(d) TPC-C mix of all transactions

1K 4K 16K 64K 256K >512K
number of trades

0

1000

2000

3000

4000

tr
a
n
sa

ct
io

n
s/

se
c

4.35x

3.35x

1.79x 1.36x
1.15x 1.14x

QURO
original

(e) TPC-E trade update transaction

2 4 8 16 32 64
number of bidding items

0

10000

20000

30000

40000

50000

60000

tr
a
n
sa

ct
io

n
s/

se
c 3.80x 2.30x

1.47x
1.23x 1.15x

1.02x

QURO
original

(f) Bidding transaction

Figure 3: Performance comparison: varying data contention

We ran the applications for 20 minutes in the profiling phase to
collect the running time of queries. In each experiment, we omitted
the first 5 minutes to allow threads to start and fill up the buffer
pool, and the measured the throughput for 15 minute. We ran each
application for 3 times and report the average throughput. We also
omitted the thinking time on the customer side, and we assume
that there are enough users issuing transactions to keep the system
saturated.

6.2 Varying Data Contention
In the first experiment, we compared the performance of the orig-

inal code and the reordered code generated by QURO by varying
contention rates while fixing the number of concurrently running
database threads to 32. Varying data contention is done by chang-
ing the data set size a transaction accesses. For the TPC-C bench-
mark, we change the data size by adjusting the number of ware-
houses, from 1 to 32. With 1 warehouse, every transaction either
reads or writes the same warehouse tuple. With 32 warehouses,
concurrent transactions are likely to access different warehouses as
they have little data contention. For the TPC-E benchmark, we ad-
just the number of trades each transaction accesses. As the trade
update transaction is designed to emulate the process of making
minor corrections to a set of trades, changing the number of trades
changes the amount of data the transaction accesses. We varied the
number of trades from 1K to the size of entire trade table, 576K.
When the number of trades being updated is small, multiple con-
current transactions will likely modify the same trade tuple. In
contrast, when transactions randomly access any trade tuple in the
trade table, they will likely modify different trades and have little
data contention. For the bidding benchmark, we adjusted the num-
ber of bidding items. The bidder giving a higher bidding price will
change the current price on that bid item. We set the percentage
of bidder giving higher bidding price to be 75%, which means that
75% of the transactions will write the item tuple.

Figure 3a shows the results of TPC-C running only the payment

transaction (an excerpt is shown in Listing 1). Reordered imple-
mentation generated by QURO achieves up to 6.53× speedup as
compared to the original implementation. Figure 3b shows the
results of TPC-C benchmark running only new order transactions.
In this transaction, the flexibility of reordering is restricted by the
many data dependencies among program variables. Despite this
limitation, QURO still achieves up to 2.23× speedup as a result of
reordering. Figure 3c shows the results of the TPC-C benchmark
comprising 50% new order and 50% payment transactions. Under
high data contention, the speedup of reordering is 4.13×. Figure 3d
shows the results of TPC-C with standard mix of five types of trans-
actions according to the specification. Increasing the types of trans-
actions makes more data contentious, as some tables are only read
by one type of transaction, hence there are no data contentions on
those tables when only that type of transactions are executed. But
with transaction mixes, there might be other transaction types that
would write to the same table, thus causing contentions. However,
with a mix of five types of transactions, reordering still increases
the overall throughput by up to 1.74×.

For TPC-E, Figure 3e shows the results of trade update trans-
action. This benchmark has a while loop that on average runs for
20 iterations. There are multiple read queries within each iteration,
but only one update query. QURO discovered the optimal reorder-
ing by breaking the loop and putting all the write operations from
different iterations towards the end of the transaction, resulting in
a speedup of up to 4.35× as compared to the original implemen-
tation. Even when there is little data contention, reordering still
outperforms the original implementation by 1.14×. We attribute
this to the improved cache locality, since after loop fission, a single
table is accessed repetitively within a single loop, as compared to
the original application where multiple tables are accessed within
one loop iteration.

Finally, Figure 3f shows the results of the bidding benchmark.
The bidding transaction is short and contains only five queries. In
the reordered implementation, the bidding item is read as late as
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Figure 4: Performance comparison: varying number of threads

possible, followed by the item update being the last operation in
the transaction. This resulted in a speedup of up to 3.80×.

The results show that as the data size decreases, the contention
rate increases, which in return increases the chance of improving
performance by reordering.

6.3 Varying Number of Database Threads
In the next set of experiments, we ran the benchmarks on the

same data, but varied the number of database threads from 1 to
128. With the same database size, running more threads increases
the amount of contention. We would like to study how the Quro-
generated implementations behave as the number of threads in-
creases.

Figure 4a-d shows the results of running transactions from TPC-
C. In this experiment we fixed the number of warehouse to be 4.
For the payment transaction, QURO speeds up the application up
to 3.52×. For the new order transaction, the amount of speedup
due to reordering increases as thread number increases, reaching
the maximum of 1.57× when using 64 threads.

Figure 4e shows the results of the TPC-E trade update transac-
tion, where we fixed the number of trades to be 4K. The throughput
of original implementation falls greatly as the number of threads
exceeds 16, while the reordered implementation only decreases
slightly, and still speeds up the application by up to 3.35×.

Unlike TPC-C new order and payment transactions which have
significantly contentious queries, queries in trade order and trade
result transaction access data with similar contentious level. In this
case, reordering slightly increases the throughput of the trade order
transaction by up to 1.05×, and a mix of trade order and trade result
transactions by up to 1.57×. We also ran QURO on trade status
transaction, which is a read-only transaction. In this case reordering
has the same throughput as the original implementation since there
is no lock contention. Detailed results and analysis can be found in

the technical report [23].
Finally, Figure 4f shows the results of the bidding transaction.

We fixed the number of bidding items to be 4. As shown in the
figure, reordering increases application throughput by up to 2.30×.

We also compared how each benchmark scales as the number of
threads increases by evaluating self-relative speedup. The base-
line for both implementations is the throughput of single-thread
execution with the original implementation, and Figure 5 shows
how throughput changes as the number of threads increases. We
only present the results of the payment and trade update transaction
while the results of other transactions can be found in the technical
report. As shown in the figure, the reordered implementation has
larger self-relative speedup than the original implementation as the
number of threads exceeds 8. When running on 32 threads on the
payment transaction, QURO-generated implementation has 12.4×
self-relative speedup while 3.8× for the original. By reordering
queries, QURO allows applications to scale up to a larger number
of concurrent database connections as compared to the original im-
plementation.

6.4 Analyzing Performance Gain
We did another set of experiments to gain insights on the sources

of performance gain due to reordering.

Query execution time. We profiled the amount of time spent in
executing each query. We show the results for the TPC-C payment
transaction in Table 2. The table lists the aggregate time breakdown
of 10K transactions, with 32 database threads running transactions
on a single warehouse. In this case reordering sped up the bench-
mark by 6.53×, as shown in Figure 3a.

The single-thread result in the third column indicates the running
time of queries without locking overhead as each transaction is ex-
ecuted serially. By comparing the values to the single-thread query
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Figure 5: Self relative speedup comparison

original reordered single-thread ratio

query 1 0.97 1.09 0.72 1.12
query 2 210.27 6.06 0.73 0.03
query 3 0.97 1.12 0.68 1.15
query 4 0.80 17.18 0.62 21.48
query 5 1.38 1.59 0.70 1.15
query 6 1.86 1.31 0.98 0.70
query 7 1.09 1.52 0.81 1.39
query 8 1.16 1.60 0.17 1.38
query 9 0.79 0.96 0.70 1.22

total_latency 219.29 32.43 6.11 0.15

Table 2: Query running time of the payment transaction, where ra-
tio=reordered/original. The reordered implementation reduces la-
tency by 85%.

time on each row, we can infer amount of time spent in waiting for
locks of that query in both implementations.

For the original implementation, the results show that most of the
execution time was spent on query 2. As shown in Listing 1, this
query performs an update on a tuple in the warehouse table, and
every transaction updates the same tuple. By reordering, the run-
ning time of this query is significantly shortened: the query time in
the original implementation is reduced by 97%. However, the exe-
cution time for all other queries increases after reordering. This is
due to the increased chances of other queries getting blocked during
lock acquisition. In the original implementation, the query access-
ing the most contentious data effectively serializes all transactions
as each thread needs to acquire the most contentious lock in the be-
ginning. As a result, the execution time of all subsequent queries is
nearly the same as the time running on a single thread (i.e., without
locking overhead). But reordering makes these queries run con-
currently as they need to compete for locks, and this increases the
running time.

We also profiled the new order transaction. In this transaction,
the opportunities for reordering is limited by the data dependencies
among queries. In particular, query 2 reads a tuple from the district
table and reserves it for update later in the transaction. This query
is most contentious one. However, query 2 cannot be reordered to
the bottom of transaction since there are many other queries that
depend on the result of this query. This limits the amount of query
time reduction, as shown in Table 3.

The above analysis indicates a trade-off with reordering. Re-
ordering decreases the time spent on lock waiting on conflicting
queries, but increases the time spent on less-conflicting queries. In
most cases, the decrease in lock waiting time for contentious data
usually outweighs the increase in lock waiting time for queries that
access non-contentious data, and reordering reduces query latency

original reordered single-thread ratio

query 1 0.73 0.76 1.91 1.04
query 2 89.77 16.16 0.93 0.18
query 3 0.92 1.01 1.02 1.09
query 4 0.81 0.88 0.76 1.09
query 5 0.63 0.69 0.71 1.08
query 6 0.74 0.97 0.78 1.30
query 7 0.66 0.76 0.62 1.16
query 8 0.69 0.80 0.78 1.15
query 9 0.79 1.06 0.69 1.34

query 10 0.67 0.82 0.62 1.23
total_latency 114.99 46.66 27.01 0.41

Table 3: Query running time of the new order transaction. The
reordered implementation reduces latency by 59%.

#of trades original reordered ratio speedup

1K 53.89% 39.12% 0.73 4.35x
4K 20.08% 1.78% 0.09 3.35x

16K 2.39% 0.35% 0.15 1.79x
64K 0.55% 0.08% 0.15 1.36x

256K 0.14% 0.02% 0.14 1.15x
>512K 0.00% 0.00% 1.00 1.14x

Table 4: Abort rate comparison of the trade update transaction,
where ratio=reordered/original. With 4K trades, reordering can re-
duce the abort rate by up to 91%.

despite some queries now takes slightly longer time to execute.

Abort rate. For the TPC-E trade update transaction, reordering
improves performance by reducing abort rate. On average one trade
update transaction randomly samples 20 trades and modifies the
trade tuples selected. When the number of trades is small, concur-
rent transactions are likely to access the same set of trades, but in a
different order, which causes deadlock. Reducing the locking time
not only makes transaction faster, but also reduces the abort rate as
shown in Table 4.

Figure 6 shows how reordering reduces abort rate. In the trade
update transaction, only one query modifies the trade table in every
loop, while there are other queries performing read on other tables
that are not being modified. Assume we have two transactions T1
and T2. T1 starts first, and there is a time range within which if T2
starts, T1 and T2 are likely to have deadlock. We refer this time
range as deadlock window, as shown in Figure 6. After reordering,
the deadlock window is shortened, so there is less chance that the
transaction would abort, and thus throughput increases.

6.5 Worst-Case Implementations
To further validate our observation that the order of queries af-

fects transaction performance, we manually write a “worst-case”
implementations where the most contentious queries are issued first
within each transaction. We then compared the performance of
those implementations against the original and QURO generated
implementations. The results for the TPC-C payment transaction
are shown in Figure 7 (results for other benchmarks are presented
in the technical report), with the throughput ratio of best and worst
case implementation labeled. As expected, the implementation with
the most contentious queries executed first shows the worst perfor-
mance as the number of threads increases. In contrast to Figure 4a,
reordering obtained even larger speedups when compared to the
worst-case implementation, with up to 4.10× improvement when
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32 threads are used.
This experiment shows that the order of queries can have great

impact on performance. While QURO relies on profiling to estimate
the lock contention, if the workload changes, transactions need to
be re-profiled and reordered accordingly. We leave dynamic profil-
ing and regenerating transaction code as future work.

6.6 Disk-based DBMS
Next we consider the performance of QURO-generated code for

disk-based DBMSs. We measured application performance while
changing the amount of time spent on disk operations during trans-
action execution. This is done by varying buffer pool sizes. When
the buffer pool is smaller than the database size, dirty data needs to
be flushed to disk, making disk operations a significant portion of
transaction execution time. Figure 8 shows the performance com-
parison of the TPC-C transactions. When the buffer pool is small,
disk operations dominate the transaction processing time, thus the
performance gain by reordering becomes trivial. Increasing buffer
pool size decreases the time spent on disk, and as expected that in-
creases throughput as a result of reordering. This experiment shows
that even when the database is not completely in-memory, reorder-
ing can still improve application throughput.

6.7 Performance Comparison with Stored Pro-
cedures

In the previous experiments, we ran our database server and
client program on the same machine to minimize the effect of net-
work round trips as a result of issuing queries. In this experiment
we added another open source implementation that uses stored pro-
cedures [3]. Using stored procedures, the client issues a single
query to invoke the stored procedure that implements the entire
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Figure 9: TPC-C performance of original, the QURO generated re-
ordered and a stored procedure implementation.

transaction. As a result, the amount of network communication
between the client and the database is minimized.

Figure 9 shows the results of TPC-C payment transaction in this
experiment. When there is little data contention, the stored proce-
dure implementation outperforms the others due to less round trip
time. However, as the amount of data contention increases, the
time spent on locking far exceeds the time spent on the network
communication, and the reordered implementation has higher per-
formance improvement (3.52×) over the original, as compared to
the improvement of the stored procedure implementation (1.41×).

6.8 ILP Optimization
In the final experiment, we quantified the optimization presented

in Section 4.4 in reducing the amount of ILP solving time. For the
experiment, we chose two transactions: new order transaction with
40 statements and 9 queries, and trade order transaction with 189
statements and 21 queries. After preprocessing, the two transac-
tions were split into 27 and 121 reordering units respectively. We
used QURO to formulate each transaction into an ILP problem, us-
ing both the simple formulation discussed in Section 4.2 and the
optimized formulation as discussed in Section 4.4. We then used
two popular open source ILP solvers, lpsolve [6] and gurobi [5], to
solve the generated programs with a timeout of 2 hours. The al-
gorithm for restructuring the transaction code is described in Sec-
tion 4.5, which is only needed when optimization is used, runs for
1 second in both cases.

The results are shown in Figure 5. Under the original problem
formulation where each reorder unit is represented by a variable in
the ILP, both solvers did not finish before timeout for transaction
2. In contrast, the optimized formulation reduces the number of
variables by 79% and the number of constraints by 98%. The prob-
lem also solves much faster, and hence allowing QURO to process
larger transaction code inputs.



Transaction 1 Transaction 2

# statements 40 189
# queries 7 25

# variables 27 121
# constraints 266 3595

# constraints post-opt 6 64
lpsolve gurobi lpsolve gurobi

Original solving time >2hrs 1s >2hrs >2hrs
Optimized solving time 1s 1s >2hrs 1s

Table 5: ILP experiment results. The number of variables equals
to the number of reordering units. Together with the number of
constraints, these two numbers indicate the ILP problem size.

7. RELATED WORK
Besides lock-based methods, various concurrency control mech-

anisms have been proposed, such as optimistic concurrency con-
trol(OCC) [18] and multi-version concurrency control(MVCC) [7].
Yu et al. [25] studies the performance and scalability of differ-
ent concurrency control scheme for main-memory DBMS. In our
technical report, we compare the performance of 2PL with QURO-
generated implementation to OCC and MVCC.

There has been work done on improving the efficiency of locking-
based concurrency control schemes. Shore-MT [16] applies 2PL
and provides many system-level optimization to achieve high scal-
ability on multi-core machines. Jung et al. [17] implemented a lock
manager in MySQL and improves scalability by enabling lock allo-
cation and deallocation in bulk. Horikawa [14] adapted a latch-free
data structure in PostgreSQL and implemented a latch-free lock
manager. However, none of these systems examine how queries
are issued by the application. QURO improves the performance by
changing the database application, and our work can also leverage
other locking implementations as well such as the ones described.

There has also been work done in looking into improving database
performance from the database application’s perspective. DBridge
[9, 13] is a program analysis and transformation tool that optimize
database application performance by query rewriting. Sloth [11]
and Pyxis [10] are tools that use program analysis to reduce the
network communication between the application and DBMS.

Finally, there is also work done in using database application
semantics to design concurrency control protocol. Faleiro et al. [12]
show that lazy transaction processing improves cache locality and
achieves better load balancing. It uses contention footprint to help
decide which query to delay execution and reduce data contention.
However, this technique only applies to deterministic DBMSs and
requires knowing all the queries to be executed before transaction
starts. Our work combines the knowledge of concurrency control
with program analysis of database applications and is applicable to
a wider range of DBMSs.

8. CONCLUSION
In this paper, we presented QURO, a new tool for compiling

transaction code. QURO improves performance of OLTP applica-
tions by leveraging information about query contention to automat-
ically reorder transaction code. QURO formulates the reordering
problem as an ILP problem, and uses different optimization tech-
niques to effectively reduce the solving time required. Our experi-
ments show that QURO can find orderings that can reduce latency
up to 85% along with an up to 6.53× improvement in throughput
as compared to open source implementations.
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